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ABSTRACT 
Controller Area Network is a bus commonly used by controllers inside vehicles and in various industrial control 

applications. In the past controllers were assumed to operate in secure perimeters, but today these environments 

are well connected to the outside world and recent incidents showed them extremely vulnerable to cyber-attacks. 

To withstand such threats, one can implement security in the application layer of CAN. Here we design, refine 

and implement a broadcast authentication protocol based on the well known paradigm of using key-chains and 

time synchronization, a commonly used Mechanism in wireless sensor networks, which allows us to take 

advantage from the use of symmetric primitives without the need of secret shared keys during broadcast. But, as 

process control is a time critical operation we make several refinements in order to improve on the 

authentication delay. For this we study several trade-offs to alleviate shortcomings on computational speed, 

memory and bandwidth up to the point of using reduced versions of hash functions that can assure ad hoc 

security. To prove the efficiency of the protocol  

 

I. INTRODUCTION 
Modern automotive electronics systems are 

dis-tributed as they are implemented with software 

run-ning over networked Electronic Control Units 

(ECU) communicating via serial buses and gateways. 

Most systems (but not all; indeed, the automotive 

indus-try has started to take actions to prevent 

tampering with calibration parameters in engine 

control applica-tions) have not been designed with 

security in mind. In addition, in the majority of the 

cases, there was little or no interest for hackers to 

compromise them. The only exception known so far 

is the after-market community that tampers with 

engine calibrations to increase engine’s performance. 

Methods and tools for the verification of the 

reliability of automotive electronics systems against 

random failures are commercially available. 

However, no security aspect is included as part of the 

hardware and software architecture development 

process and no standard communication protocol has 

any built-in provisions to prevent or mitigate attacks. 

Communication networks are vulnerable as they en-

able unauthorized access in a relatively straight for-

ward manner as all the communications between the 

ECUs in the vehicle are performed with no authen-

tication [2]. Authentication mechanisms ensure that 

sender and receiver identities are not compromised 

and thus, the sender and the receiver are who they are 

claiming to be. Unfortunately, current communi-

cation network protocols, including Controller Area 

Network (CAN), FlexRay, MOST, and LIN have no 

authentication (or at best have CRC mechanisms to  

the potential exists for an automotive ECU to be infil-

trated by an attacker, who can then potentially gain 

access, via a serial communication bus, to an array of 

other ECUs. guarantee data integrity) and send their 

messages in the clear. Hence, room for fraudulent 

communi-cations between ECUs exists. For example, 

in the CAN protocol, masquerade attacks followed by 

re-play attacks  

ECU pretending to be another ECU by 

sending/replaying a message the ECU is not en-titled 

to send) are likely to happen as messages ex-changed 

in a CAN network are broadcast from one ECU to the 

rest of the ECUs in the network. In fact, the receiver 

cannot verify the identity of the sender of the 

message as an attacker could have pretended to be 

someone else (and therefore sending a message with 

an ID the pretender was not configured to send in the 

first place). Again, this scenario is called a 

masquerade-based attack which then leads to a pos-

sible ―replay‖ attack as the attacker, by pretending to 

The state of the art processes, methods, and 

tools We are convinced that security can be taken 

into ac-count in the early phases of the development 

cycle of automotive electronics systems, both by 

enforcing software programming standards that 

prevent soft-ware defects that may enable cyber-

attacks, as well as by implementing security 

mechanisms such as au-thentication that enable the 

validation of the identity of the sender to avoid 

potentially harmful messages to be 

replayed/transmitted across the communica-tion 

network. However, even for known vulnerabil-ities, 

one has to perform a cost versus benefits anal-ysis as 
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the communication data rates available are very 

limited—it is necessary to evaluate whether a full 

authentication-based solution that addresses se-curity 

concerns is compatible with performance and 

resource cost constraints that are typical of automo-

tive embedded systems and specifically of the pre-

dominant communication protocols used in the vehi-

cle (e.g., CAN has very limited data rates between 

33kbps and 500kbps). In fact, authentication mech-

anisms typically require large amounts of processing 

power, memory, and bandwidth, in addition to those 

already reserved for the messages that are exchanged 

across ECUs. As more bytes need to be transmitted, 

current bus technologies may not be sufficient given 

their already limited available bandwidth. 

Authentication mechanisms have been 

proposed in the literature. The TESLA protocol [3–5] 

uses a time-delayed release of keys for 

authentication. A receiver can check the Message 

Authentication Code (MAC) after receiving the key 

used to compute the MAC. To guarantee security, the 

protocol needs to maintain global time and make sure 

that a receiver gets a message before the 

corresponding key is re-leased. In [6–8], the authors 

emphasize the con-straints in an embedded network 

and consider a time-triggered (i.e., global time is 

available) broadcast pro-tocol. Even with the features 

proposed for reduc-ing the number of bits transmitted 

and for achieving fault tolerance, two major 

challenges exist in apply-ing these approaches to the 

CAN protocol. First, the bandwidth available in the 

CAN protocol is very lim-ited. Second, there is no 

notion of global time in the protocol. The challenge 

for OEMs in the automotive industry is to design a 

security mechanism for CAN with high security, 

combined with minimal communi-cation overhead, 

high fault tolerance, low cost, and no global 

synchronization clock. 

In this paper, we describe a security 

mechanism that addresses the requirements stated 

earlier. Specifi-cally, our mechanism can be used to 

retro-fit the CAN protocol to protect it from cyber-

attacks such as masquerade and replay attack with as 

low as pos-sible overhead, and high degree of 

tolerance to faults. 

We address the low cost requirement by 

providing a software-only solution with no additional 

hardware required. We focus on the CAN protocol 

because it is the most used serial data protocol in 

current in-vehicle networked architectures, and it will 

likely be used for a long time. We define the attack 

scenarios that our security mechanism addresses, 

namely mas-querade and replay. We focus on a 

security mecha-nism based upon message 

authentication and sym-metric secret keys. Our 

mechanism leverages and modifies the work 

described in [6–8] as we introduce the concept of 

counters to implement time-stamping of the message 

signatures (MACs) in order to over-come the lack of 

global time in the CAN protocol. We do not focus on 

the initial security critical key assign-ment and 

distribution as this aspect, although very important, is 

already being mentioned in [6]. Instead, we focus on 

run-time authentication both in the sys-tem steady 

state (after ignition key-on and the secu-rity secret 

keys have been distributed to the ECUs) and during 

running resets experienced by some of the ECUs in 

the system (when counters are potentially out of 

synchronization). Regarding resets, we dis-tinguish 

between ECU running resets or any other ECU 

expected low-power modes that occur at rates that do 

not allow storing in non-volatile memory (flash) the 

most recent sending and receiving coun-ters (needed 

for authentication) as this would lead to the flash 

being non-operational (e.g., due to burn-ing). We 

introduce two mechanisms that cope with these 

scenarios, which involve either an ECU that heals 

itself or a more drastic system-wide counter re-set (or 

re-synchronization). We provide an analysis of the 

trade-offs and the benefits versus drawbacks of both 

approaches. We also consider potential net-work 

faults that could hinder the effectiveness of our 

security mechanism—we provide a security mecha-

nism that is fault tolerant. Finally, as we are con-

strained by data rates and by costs, we have defined a 

software-only mechanism that does not require ad-

ditional hardware. As security has a cost in terms of 

performance (because of the additional bits needed 

for signatures and counters) and in terms of poten-tial 

hazards that may occur due to poor performance, we 

also work on exploring trade-offs between degree of 

security and other metrics such as resource uti-

lization. Experimental results show that our security 

mechanism can achieve high security level without 

in-troducing high communication overhead in terms 

of bus load and message latency. 

The paper is organized as follows: Section II 

defines the system and attacker model; Section III 

presents the existing mechanisms, their limitations, 

our pro-posed security mechanism, and an evaluation 

of the impacts of the security mechanism on the 

system bus load and the message latency; Section IV 

shows the experimental results, and Section V 

concludes this paper. 

 

II. SYSTEM AND ATTACKER 

MODEL 
We adapt the terminology from [9] to the automo-

tive use case, where a node is one of the computers 

(ECUs) connected to the other ECUs in the vehicle 

via a serial data communication bus to provide the 

following definitions of attack scenarios: 

• Modi cation: an unauthorized node changes 
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existing data (e.g., a sender node modifies the 

data portion of a communication frame to be 

transmitted).  

• Fabrication: an unauthorized node generates 

additional data (e.g, a sender node creates a new 

frame with an ID that the node is not au-thorized 

to transmit).  

• Interception: an unauthorized node reads data 

(e.g., a receiver node accepts a message with an 

ID that is not supposed to accept and reads the 

data portion of the frame).  

• Interruption: data becomes unavailable (e.g., a 

sender node sends high priority frames over the 

communication bus at a very high rate making it 

impossible for other frames to be transmit-ted).  

For the sake of our discussion, we generalize 

modi-cation and fabrication as an unauthorized write 

of data by a node, an interception attack as an unau-

thorized read by a node, and an interruption attack as 

a Denial-of-Service (DoS) attack. We now define the 

following properties: 

• Data integrity: data is not changed (written) or 

generated by an unauthorized node.  

• Con dentiality: data is not read by an unau-

thorized node.  

• Authentication: a receiver or a sender is who it 

claims to be.  

• Non-repudiation: a sender ensures that a re-

ceiver has received the message, and a receiver is 

sure about the identity of a sender.  

 

For automotive electronics systems and the 

CAN pro-tocol, data integrity and authentication are 

very rel-evant properties which are suitable to our 

software-only security mechanism solution. To 

prevent an in-terruption attack, hardware protections 

are required as, because of the very same nature of 

the CAN proto-col (broadcast and multi-master with 

arbitration), a malicious node can freely read and 

write data from/to the bus. Interruption attacks are 

outside of the scope of our work. 

Before introducing our attacker model, we 

first state our assumptions, and provide definitions 

about our system model as follows: 

 

Assumption 1. The network architecture has only one 

CAN bus, and all ECUs are connected to the bus 

itself. 

 

De nition 1. A node is an ECU. 

 

De nition 2. The sender of a message is the node 

sending the message. 

 

Assumption 2. A sender sends a message by 

broadcasting it on the CAN bus. 

 

De nition 3. A receiver of a message is a node 

receiving the message and accepting it by comparing 

the message ID to the list of its acceptable message 

ID's
2
. 

 

Note that CAN is a broadcast protocol, so every node 

―receives‖ the message, but only receivers (as we 

have defined them) accept the message. 

 

Assumption 3. A node can use volatile (RAM) and/or 

non-volatile (FLASH) memory to store data. Data 

stored in RAM is no longer available after a node 

reset; data in FLASH is available after a node resets. 

 

To describe our attacker model, we use a networked 

architecture topology as in Figure 1. Although in 

CAN, any node can play the role of sender and re-

ceiver in different bus transactions, for illustration 

purposes, we assume N1 is a sender node and N2 is a 

receiver node. We also assume that N1 and N2 are 

legitimate nodes. In Figure 1, if malicious software 

takes control of N3, it can access any data stored in 

RAM and FLASH, including data used to implement 

a security mechanism (e.g., shared secret keys). It is 

also possible that an attacker uses a node (N4) that has 

been added to the network (e.g., to perform di-

agnostics on the network this node could be laptop 

running diagnostic software and connected to the net-

work using the CAN adapter interface); in this case, 

the malicious software also has access to the RAM 

and FLASH memory. However, no critical data (e.g., 

shared secret keys) is stored in RAM and FLASH in 

the first place. 

  strong weak 

sender receiver attacker attacker 

N1 N2 N3 N4 

software software software software 

RAM RAM RAM RAM 

FLASH FLASH FLASH FLASH 

 

Figure 1. Attacker Model. 

 

We are now ready to provide some definitions as fol-

lows: 

De nition 4. A strong attacker is an existing node 

where malicious software is able to gain control with 

full access to any critical data. 

 

De nition 5. A weak attacker is a node where ma-

licious software is able to gain control but no critical 

data is available (mainly because it was never stored 

in memory). 

 

De nition 6. A legitimate node is a node which is 

neither a strong attacker nor a weak attacker. 
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For example, in Figure 1, N3 and N4 are strong and 

weak attackers, respectively, and N1 and N2 are le-

gitimate nodes. The possible attack scenarios that N3 

and N4 can carry out and that we are addressing with 

our solution are: 

 

Types Strong Attacker N3 Weak Attacker N4 

Modification   

or Scenario 1 Scenario 2 

Fabrication   

Replay Scenario 3 Scenario 4 

 

 

In the table, we describe the scenario in which a mes-

sage is supposed to be send by a legitimate sender 

(N1). However, N3 and N4 try to alter this situation 

with either a strong or weak attack. Again, we are not 

addressing attacks such as DoS as they would re-

quire additional hardware—our proposed solution is 

software-only. We now explain the scenarios as fol-

lows: 

• Scenario 1: this is possible if 

important/secret data between N1 and N2 has been 

stored in RAM or FLASH of N3. For example, if 

impor-  

tant/secret data is shared and used by every node in 

the network
3
, then N3 can use the data stored in RAM 

or FLASH and pretend to be N1 to send a new 

message to N2 (fabrication).  

 

• Scenario 2: there is no threat because no 

impor-tant/secret data is stored in RAM or FLASH of  

N4.  

 

• Scenario 3: this is possible if N3 reads a 

message from the CAN bus and then writes the same 

message to the CAN bus without any modifi-cation. 

Note that, in this case, N3 does not need to get 

important/secret data between N1 and N2, e.g., a 

secret pair-wise key as in Fig-ure 2, because N2 will 

just accept the message thinking it was sent by N1.  

 

• Scenario 4: same as Scenario 3. 

We now define a masquerade and replay 

attack and show how we can prevent it as follows [7]: 

 

De nition 7. In a masquerade attack, an attacker 

(strong or weak) sends a message in which it claims 

to be a node other than itself. 

 

Note that a masquerade attack can lead to a fabri-

cation attack, a modification attack, or as a special 

case, a replay attack: 

 

De nition 8. A replay attack is enabled by a 

mas-querade attack, and the node in order to be 

successful, needs rst to pretend to be another node. In 

the case of CAN, in a replay attack a node transmits 

a copy (replays) of a message it has received from 

the CAN bus. The message is not modi ed or altered. 

It is merely sent to other nodes by a node that is not 

enti-tled to send it. The other nodes have tables that 

match the message id to the sender and therefore, 

determine the identity of the sender but have no 

provision to au-thenticate it. 

Since CAN is a broadcast protocol, both a 

strong and weak attacker can successfully carry out a 

masquer-ade/replay attack if no security mechanism 

is put in place, or even if pair-wise keys are used as 

the at-tacker would not need them to successfully 

carry on the attack. Before introducing some basic 

security mechanisms, we also provide a definition of 

a false acceptance and a false rejection as follows: 

 

De nition 9. A false acceptance is the scenario that a 

node accepts messages which it should reject. 

 

De nition 10. A false rejection is the scenario that a 

node rejects messages which it should accept. 

By the definition, a successful attack implies 

a false acceptance. 

 

III. SECURITY MECHANISMS 
In this section, we will first introduce some 

basic authentication mechanisms and describe the 

exist-ing work in this area in more detail. Then, we 

will show the challenges in implementing a security 

mechanism for CAN and how we can overcome these 

difficulties with our proposal. Finally, we will pro-

vide our counter-based implementation, reset mech-

anisms, and some detailed analysis of their perfor-

mance vs. security levels achieved. We now provide 

a few additional definitions that we will use in the 

rest of the paper. 

Notations Explanations 

i the ID of a node 

j the ID of a node 

k the ID of a message 

Ni the node with ID i 

Mk the message with ID k 

n the number of nodes 
n
k the number of receivers of Mk 

r
k;s the ID of the s-th receiver of Mk 

f the function to compute a MAC 

T the time 
K
i;j the shared secret key of Ni and Nj 

A
k;s the MAC for the s-th receiver of Mk 

A the MAC computed by a receiver 
C
i;k the counter stored in Ni for Mk 

C
M

 

the most significant bits (MSBs) of a 

counter 

CL 

the least significant bits (LSBs) of a 

counter 
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1 BASIC AUTHENTICATION  

N1 N2 N3 

K
1,2

K
1,3 

K
1,2

K
2,3 

K
1,3

K
2,3 

 

 

Figure 2. Pair-wise secret key distribution. 

 

Basic authentication is based on sharing a 

secret key between a sender N1 and a receiver N2 and 

computing a Message Authentication Code (MAC) 

[6] which is essentially a signature of a message. A 

key K1;2 is the shared secret key stored in N1 and N2 

and only known by N1 and N2. For the sake of the 

discussion and without loss of generality, we assume 

a pair-wise secret key assignment (an example is 

shown in Fig-ure 2). N1 and N2 perform the following 

steps to send and receive a message Mk: 

 

Sender (N1) 
1
 

A
k;1 

=
 
f(M

k
; K

1;2
)
 

2 Send Mk and Ak;1  

 

Receiver (N2) 

1 Receive Mk and Ak;1 

2 A = f(Mk; K1;2)  

3 Accept Mk if and only if A = Ak;1  

 

Note that the ―1‖ of Ak;1 means that N2 is the 

first and the only receiver of Mk. Even if N3 is a 

strong attacker, since the keys are assigned in a pair-

wise fashion, N3 is not able to compute the MAC (as 

it is missing K1;2) that is needed to attack N2 with a 

message that is supposed to be sent by N1. However, 

since in a broadcast protocol the message transmit-

ted is read by any node in the network, and Mk and 

Ak;1 are sent in the clear, N3 could read this data and 

resend it verbatim (essentially replay the same 

message). N2 is going to accept it as the MAC is a 

match. A possible solution to this problem is to use 

the concept of global time that allows time-stamping 

messages. If global time is adopted then N2 can pre-

vent the attack from N3. An authentication mecha-

nism with global time-stamping as follows: 

 
 

Receiver (N2) 

1 Receive Mk and Ak;1 

2 Get sending time T 

3 A = f(Mk; T; K1;2)  

4 Accept Mk if and only if A = Ak;1  

 

As in the scenario explained earlier, if N3 

wants to send Mk to N2, as it cannot retrieve K1;2 

because it does not have it, it cannot compute the 

correct MAC. In addition, in case of a replay attack, 

if N3 replays the message it will do so using a MAC 

computed us-ing an earlier time stamp that what N2 

would use to compute the MAC. Therefore, the 

MACs cannot match, and N2 rejects the message. As 

we will show later in this paper, global time is not 

available in CAN and therefore we introduce 

monotonic counters to address replay attacks. 

 

2 EXISTING WORK  

The basic authentication mechanisms have 

been sum-marized in the above section, but there are 

still other alternatives and variations for 

authentication. A lot of existing work focus on digital 

signatures. How-ever, digital signatures have very 

high communica-tion overhead, making them 

inapplicable or at least very difficult to use for CAN. 

In [6–8], the authors emphasize the 

constraints in an embedded network and consider a 

time-triggered (i.e., global time is available) 

broadcast protocol. Since every node is a receiver
4
, a 

transmitted mes-sage includes MACs for all 

receivers. Therefore, N1 and N2 perform the following 

steps to send and re-ceive a message Mk: 

 
The authentication operation using the for-

loop uses n since the authors are using a 

comprehensive def-inition of receiver. This means 

that there are as many receivers as nodes in the 

network. Each re-ceiver authenticates the message by 

first identifying the correct MAC that the receiver 

needs to compare to, based upon the information that 

maps each re-ceived message to the unique sender of 

the message itself. Besides the authentication aspect, 

the au-thors have also introduced other interesting 

features to their authentication mechanism to cope 

with the potentially limited communication bus data 

rate and provide fault tolerance. First, only a subset 

of the MAC bits are sent and used for authentication 

pur-poses, i.e., A and Ak;j in the above operations are 

replaced by [A]l and [Ak;j ]l where []l is the trunca-tion 

operation to l bits. The authors, in their analysis, 

assume that an unsafe state is reached only when at 

least k out of n most recently received messages are 

successfully attacked. Lastly, in their extension work 
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[8], the authentication is performed by different 

voting nodes. 

 

3 CHALLENGES FOR CAN  

Even with the features proposed for 

reducing the number of bits transmitted and 

achieving fault toler-ance, two major challenges exist 

in applying the work just described to CAN. First, the 

bandwidth available in CAN is extremely limited. In 

fact, the maximum and nominal data rate of a CAN 

bus is only 500kbps, while each 11-bit ID standard 

frame has a maximum total of 134 bits which include 

a maximum of 64-bit payload, 46 bits of overhead 

(e.g., including CRC bits), and 24 bits for bit-stuffing 

[10] in the worst case. If a security mechanism needs 

to add MACs to the original frame, as the original 

frame might have a 64-bit payload, the frame might 

have to be split in two or more frames. This may 

result in increasing bus utilization which may result 

in a degraded com-munication performance or even 

in a unschedulable system. Finally, as stated earlier, 

there is no global time in CAN (the global time is 

required in [3–8]). 

 

4 OUR SECURITY MECHANISM  

The key elements of our proposed security 

mecha-nism are stored in each node (in the volatile 

and non-volatile memory). The elements are: the ID 

table, the pair-wise symmetric secret keys, and 

message coun-ters (receiving and sending). In the 

following, we use our definition of receivers (see 

Definition 3). 

• ID table: unlike the approach described in [6– 8], 

our mechanism does not use MACs for all nodes. 

On the contrary, a sender only computes as many 

MACs as the corresponding receivers
5
 of the 

transmitted message. This is done by 

maintaining a ID table in each node where each 

entry is indexed by a message ID — each entry 

contains the node ID of the sender and the list of 

the node ID’s of the receivers. We define the ID 

table with the following function:  

(i; nk; rk;1; rk;2; : : : ; rk;nk ) = ID-Table(k); 

 

where k is the ID of Mk, i is the ID of the sender of 

Mk, nk is the number of receivers of Mk, and rk;s is the 

ID of the s-th receiver of Mk. A sender can check its 

ID table to deter-mine how many MACs it must 

compute, what keys it should use, and what ordering 

of MACs it should attach with the message. A 

receiver can check the ID table to determine what key 

it should use and which MAC included in the 

received frame it should select. Again, the ad-vantage 

of relying on ID tables is that our mech-anism 

reduces the number of MACs because it considers 

only the receivers that are accept-ing the frame after 

CAN filtering, rather than considering the whole set 

of receivers that the frame is broadcast to. This can 

reduce the com-munication overhead considerably. 

• Pair-wise secret key: a pair-wise key Ki;j is 

―shared secret‖ between Ni and Nj for authen-

tication. Every pair of nodes has a shared secret 

key which is not known by any other node. 

Therefore, any other node cannot mod-ify or 

fabricate a message, but a replay attack is 

possible as explained earlier. Note that using 

pair-wise keys is only a basic key distribution 

method. If we want to further reduce the com-

munication overhead, we could a assign nodes to 

several groups where each node in a group 

shares a secret key. Of course, there is a trade-

off  between security and performance (minimiz-

ing communication overhead) in that the secu-

rity level is diminished but the communication 

performance is improved.  

• Message-based counter: a counter is used to re-

place the global time and prevent a replay at-

tack. Each node maintains a set of counters, 

and each counter corresponds to a message, 

i.e., Ci;k is the counter stored in Ni for Mk. If the 

node is the sender of Mk, its counter value 

records the number of times that Mk is sent; if 

the node is the receiver of Mk, its counter value 

records the number of times Mk has been 

received (and accepted after being authenti-

cated). Therefore, if a malicious node replays a 

message, a receiver can check the correspond-

ing receiving counter to see if a message is 

fresh or not. Because of a network fault, a 

receiving counter may not have the same value 

as that of its sending counter. In other words, it 

is possi-ble that a node sends a frame, updates 

its send-ing counter, then a network fault 

occurs, e.g., the electrical bus has a transient 

fault, and thus the frame never reaches its 

destination. There-fore, the receiving node 

does not receive the frame and thus does not 

increase its receiving counter. This means that 

two counters are out of synchronization. 

However, our mechanism can deal with this 

scenario without any loss of security. We will 

explain this aspect later in the paper. We now 

provide the following additional definitions: 

 

De nition 11. A sending counter for a message is the 

counter stored in its sender. 

 

De nition 12. A receiving counter for a message is the 

counter stored in one of its receiver. 

 

In our security mechanism, every node 

maintains its ID table, pair-wise keys, and counters. 

Ni and Nj perform the following steps to send and 
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receive a mes-sage Mk: 

 

Sender (Ni) 

1 (i; nk; rk;1; rk;2; : : : ; rk;nk ) = ID-Table(k) 
2 C

i;k 
=
 
C
i;k 

+ 1
 
 

3
 
∀ s;

 
1
 
≤
 
s
 
≤
 
n
k

; A
k;s 

=
 
f(M

k
; C

i;k
; K

i;rk;s 
)
 

4 Send Mk; Ci;k; Ak;1; Ak;2; : : : ; Ak;nk  

 

Receiver (Nj ) 

1 Receive Mk; Ci;k; Ak;1; Ak;2; : : : ; Ak;nk  

2 (i; nk; rk;1; rk;2; : : : ; rk;nk ) = ID-Table(k)  

3 

Continue if and only if find s; 1 ≤ s ≤ nk; j = 

rk;s 

4 Continue if and only if Ci;k > Cj;k 

5 A = f(Mk; Ci;k; Ki;j )  

6 Accept Mk and Cj;k = Ci;k if and only if A = Ak;s  

 

Based on this mechanism, our security 

mechanism can protect any masquerade attack and 

replay at-tack. We prove our claim using the 

following three scenarios: 

• If an attacker sends a message which is not sup-

posed to be received by the receiver, then the 

receiver will reject the message in Line 6 by 

checking its ID table.  

• If an attacker sends a message which is not sup-

posed to be sent by the attacker, and it is a replay 

attack, then the receiver will reject the message 

in Line 2 by checking the counters.  

• If an attacker sends a message which is not sup-

posed to be sent by the attacker, and it is not a 

replay attack, then the receiver will reject the 

message in Line 12 by comparing the MACs.  

 

5 COUNTER IMPLEMENTATION  

These operations can meet the requirements 

stated by our problem formulation. However, the 

number of bits used for the counter must be explored. 

If the number of bits is not sufficient during the life-

time of a vehicle, then the counter may overflow. For 

example, if the counter stored at the receiving side 

overflows and resets to zero, then the replay attack 

may succeed as the attacker just needs to wait for this 

event to happen, and therefore resend a counter 

which is larger than the reset counter stored in the 

receiver; if the number of bits used for the counter is 

too large, then the bus will be overloaded. Therefore, 

we propose a solution where the counter C is divided 

into two parts: the most significant bits (MSBs) C
M

 

and the least significant bits (LSBs) C
L
—only C

L
 is 

transmitted with the message. The steps performed 

 

by Ni and Nj are similar, but only Ci;k
L
 is transmit-ted: 

 
For more details, the reader should see Figure 3. If 

Ci;k
L
 > Cj;k

L
, then this is the same scenario as that of 

the original mechanism; if Ci;k
L
 ≤ Cj;k

L
, then the 

receiver will use Cj;k
M

 + 1 to compute the MAC. If 

there is a replay attack, then the receiver will test Cj;k
L
 

= C 
L
 to be true and use Cj;k

M
 + 1 to compute the 

MAC which will be different from the one transmitted 

in the replayed message. The receiver will fail the 

test comparing the stored computed MAC and the 

received MAC and will reject the message. 

 

The advantage of using this mechanism is 

that we can reduce the communication overhead 

without any loss of security. Of course, if the receiver 

consecu-tively misses several messages due to a 

network fault, it may reject a message although there 

is no attack in place, as its receiving counter may not 

be up-to-date (out of synchronization). However, the 

proba-bility that a counter is out of synchronization is 

very low. If a counter is divided into C
M

 and C
L
 and 

the probability of a network fault is q, the probability 

that a counter is out of synchronization is q
2jCLj

 . For 

example, if |C 
L
| = 3 and q = 0:1, the probabil-ity that 

a counter is out of synchronization is only 0:1
8
. Even 

if this scenario occurs and the computed MAC would 

not match although it would pass the counter test, the 

receiver will continue rejecting mes-sages (false 

rejection). Although this scenario is not optimal, a 

counter out of synchronization is a better option than 

a successful attack. In addition, we ad-dress this 
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potential issue by providing counter reset 

mechanisms. This is the focus of the next section in 

the paper. 

 
Figure 3. The steps performed by a receiver Nj of a 

message Mk sent by a s 

 

6 COUNTER RESET MECHANISMS  

A counter reset mechanism is required to 

deal with an ECU hardware reset or with counters 

that are out of synchronization because of a network 

fault. There are two types of hardware resets. First, 

either an ECU may reset as expected, e.g., as it goes 

into a low power mode as a result of a specific 

driving mode in which some ECUs are shut off  to 

reduce the energy usage, or the ECU experiences an 

unexpected hardware re-set due to a power failure. 

Regardless of the reason why an ECU resets, the rate 

at which the resets occur or the minimum time 

interval between them might be too short to allowing 

storing critical data into FLASH which could be 

restored at a later time, as storing data in the FLASH 

too frequently (at a rate that is higher than of the 

expected maximum rate of resets) may lead to 

burning the FLASH itself. Therefore, we have 

devised mechanisms that deal with scenar-ios where 

critical data such as updated counter values cannot be 

stored in FLASH at a rate that makes them 

sufficiently up-to-date (or close to) to avoid excessive 

false rejections on the receiver side when they are 

later restored into RAM. When data can be copied to 

FLASH the mechanism is simple. Before an expected 

shutdown, or change of power state, the ECU copies 

and stores the relevant data in FLASH from RAM. At 

wake-up, the ECU restores the data from FLASH into 

RAM. However, unexpected shutdowns can oc-cur 

when a hardware failure occurs, or there is a lack of 

power, etc. In this case, it is not safe to assume that 

critical data was stored in FLASH and that can be 

restored. Therefore, provisions have to be put in 

place to bring back the ECU, and therefore the sys-

tem, to a secure state (e.g., with counter values that 

prevent attacks). Our mechanisms that deal with un-

expected hardware resets include ―node self-healing‖ 

and ―network-wide‖ counter resets. The mechanisms 

provide trade-off s between security levels and com-

munication overhead. In the following, we describe 

the self-healing mechanism operations performed by 

a node that has experienced a hardware reset. 

1. The node sets a FLAG variable to zero.  

2. The node stores its counters into FLASH every P 

seconds. The time interval P is a function of the 

FLASH technology.  

3. If a node is experiencing an expected hardware 

reset, then the node tries to store the latest 

counters value from RAM to FLASH before 

shutting down. If the operation is successful (it 

may not be if the FLASH controller refuses to 

allow it because of potential burning), then 

FLAG should be set to 1. If not, the remain-ing 

steps are the same of those taken in case of an 

unexpected hardware reset due to a power 

failure.  

4. If a node reset unexpectedly, nothing can be 

guaranteed including storing data to FLASH, 

therefore the FLAG stays at zero.  

5. When a node wakes up, if FLAG = 1, it 

restores all counters from FLASH and set 

FLAG = 0; if FLAG = 0, it restores all counters 

from FLASH (last counters saved) and increase 

them by Q, and stores them into FLASH. 

 

P is a parameter that depends upon the FLASH tech-

nology. There is a trade-off  between data freshness 

and expected life of the FLASH memory. Q is the 

upper bound of the number of messages that could be 

sent within the time interval P to prevent a replay 

attack—diff erent counters can be associated with dif-

ferent values of Q for diff erent messages. 

Since the value of Q is an estimate provided 

by the designer of the number of messages instances 

received during P , it is possible that this value is not 

the real upper bound or worst case number of 

message in-stances sent during P . Hence, a larger Q 

value than the real one may lead to false rejections, 

meaning to a situation where a receiving node has a 

receiv-ing counter that is higher than the counter 

being re-ceived although it should not be. In this 

case, the receiving node may reject message 

instances even if it should not until the sender counter 

reaches the receiver stored counter value. 

Conversely, if Q is smaller than what it should be, 

then the receiver will accept message instances it 

should not (false accep-tances). In both cases, the 

designer is expected to tune the value of Q off -line. 

The advantage of this mechanism is that at wake-up 

following a node re-set, a node resets its counters by 

itself without the need of additional messages to reset 

the counters of other nodes. Therefore, the 
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communication overhead is minimized as no 

network-wide counter synchroniza-tion is necessary. 

However, as the parameter Q is an estimate, potential 

false rejections or, even worse, false acceptances may 

occur. 

Besides the self-healing reset mechanism, we also 

pro-pose a network-wide reset mechanism. The key 

con-cepts are: 

• A RESET message to set all counters of all 

nodes to 0.  

• A REQUEST message to achieve fault toler-

ance.  

• New session keys to prevent replay attacks.  

 

In this mechanism, because every counter is reset to 

0, new session keys are required; otherwise, an at-

tacker could successfully replay-attack. Therefore, a 

random generated number needs to be included in a 

RESET message, as it is used to generate the new 

session key for each node. We can further divide this 

into two possible approaches. The first one is a ―dy-

namic‖ network reset where any node experiencing a 

reset can generate a random number and send a 

RESET message to all other nodes. The second ap-

proach is a ―static‖ network reset where only one spe-

cial master node can generate a random number and 

send a RESET message to all other nodes. 

 
 

Figure 4. The finite state machine of a node in the 

dynamic network reset. 

 

 

The finite state machine of a node in the dynamic 

network reset is shown in Figure 4. This approach 

has the following features: 

 

 

• Every node needs to maintain a variable FLAG 

to indicate if it is the last node generating the 

random number X and sending the RESET 

message.  

 

• If a node experiences a reset (goes to the re-set 

state), then it will set all counters to 0, set 

FLAG to 1, generate a random number X and 

its new session keys, and send a RESET mes-

sage with X.  

 

 

• If a node receives a RESET message, then it 

will set all counters to 0, set FLAG to 1, and 

generate its session keys.  

 

• If a node finds itself out of synchronization 

(missing a RESET message due to network 

fault), then it will send a REQ message to ask 

for going back to synchronization.  

 

If a node receives a REQ message, then it will 

check if FLAG is 1. If yes, it is the last node 

generating X and sending the RESET message, so it 

will resend a RESET message. 

 
Figure 5. The finite state machine of a master node 

in the static network reset. 

 

 
Figure 6. The finite state machine of a non-master 

node in the static network reset. 

 

The finite state machine of a master node in 

the static network reset is shown in Figure 5; the 

finite state machine of a non-master node in the static 

network reset is shown in Figure 6. The diff erences 

between static and dynamic resets are as follows: 

• A node does not need to maintain a variable 

FLAG because only the master node can gener-

ate a random number and send a RESET mes-

sage.  

• A REQ0 message is used by a non-master node 

to ask the master node to reset the network.  

• If a non-master node experiences a reset, then 

it will send a REQ0 message and wait for a 

RE-SET message.  

• If a master node receives a REQ0 message, it 

will set all counters to 0, generate a random 

number X and its session keys, and send a RE-

SET message with X.  
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Although the network-wide reset mechanism 

can guarantee that there is no false rejection or 

success-ful replay attack, it may determine high 

transient bus peak loads due to the increasing traffic 

created by the messages used to reset the counters in 

every node. 

To this point, we have proposed a self-

healing and a network-wide (static or dynamic 

master) reset mech-anism. Both mechanisms provide 

advantages and dis-advantages in terms of security 

level and bus utiliza-tion. In a real case, maybe a mix 

of them could be applied, depending on the 

requirements on the com-munication resource, its 

available capacity in terms of its data rates, and the 

secure criticality level of each message. 

 

7 ANALYSIS  

We show how the security mechanism has 

an impact on the system bus load and message 

latencies by for-mulating the problem as a feasibility 

analysis prob-lem. The system model includes the 

following param-eters: 

• n: the number of messages.  

• q: the probability that a message is missing due 

to a network fault.  

• R: the bus data rate.  

 

The following message Mk parameters are defined: 

• nk: the number of the message receivers.  

• Rk: the message rate (frequency, as the inverse 

of its period).  

• Sk: the message original size.  

• Lk: the upper-bound of the total length of 

MACs and LSB of the counter.  

• Ck: the lower-bound of the length of LSB of the 

counter.  

• Pk: the upper-bound of the probability of a suc-

cessful attack.  

• Qk: the upper-bound of the probability that a 

counter is out of synchronization.  

 

If Mk is not a security-critical message, then Ck = 0 

and Pk = Qk = 1. 

 

We define the following decision variables: 

• xk: the length of the MAC for Mk.  

• yk: the length of the LSB of the counter for Mk.  

 

We define several constraints for Mk as follows: 

• The length of LSB of the counter should be 

larger than or equal to Ck.  

• The probability of a successful attack should be 

smaller than or equal to Pk.  

• The probability that a node is out of synchro-

nization should be smaller than or equal to Qk.  

 

The constraints in mathematical forms are defined as 

follows: 

xk + yk ≤ Lk; 
 

yk ≥ Ck; 
 

2 
x
k 

≤ 
P ; 

 

q
2
 

y 

k 

k  
 

 ≤ Qk: 
 

 

The last two constraints also define the 

probability of a false acceptance (a node accepts 

messages which it should reject) and a false rejection 

(a node rejects messages which it should accept). We 

can easily de-rive the minimal values of xk and yk and 

then com-pute the message latency using the equation 

[11]: 

 

lk = B + 
∑ (

⌈ lkRi⌉  
S
i 

+
 
n
i
x
i 

+
 
y
i 

)
; R 

i2hp(k) 

where lk is the latency of Mk, B = maxi 
Si+nixi+yi

 , 

R 

 

and hp(k) is the index set of messages with higher 

priorities than Mk. By using a traditional fix-point 

calculation, the latency is computed through an iter-

ative method until convergence (if a solution exists). 

 

 

IV.  EXPERIMENTAL RESULTS 
In this section, we show how our security 

mechanism impacts on the system bus load and 

message latency. Since there is no global time in 

CAN, the approaches in [3–8] are not applicable to 

CAN networks. We used a test case with 17 security-

critical messages among 138 messages, and q = 0:1, 

R = 500 (kbps), Lk = 32 (bits), Ck = 1 (bit) for all 

security-critical messages. Table 1 and Table 2 show 

the relative bus load and av-erage latency with 

diff erent values of P and Q, where Pk = P and Qk = Q 

for all k, under the assump-tions that the nk is 1 or 3. 

The number of receivers was not known at the time 

of our experiments, so we have used a simple 

assumption. If this information is provided, more 

general experiments can be done by assigning 

diff erent values for Pk and Qk for dif-ferent k. Again, 

the main purpose of this paper is to provide a security 

mechanism and show how the 
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Table 1: The relative bus load and average message latency under nk = 1 and diff erent values of P and Q where 

―—‖ means that there is no feasible solution. Without the security mechanism, the original bus load 376.44kbps 

and average message latency 11.535ms are both scaled to 1. 

 

      Q     

           

P 10 
1
 10 

4
 10 

7
 10 10 10 13 

 Load Avg L. Load Avg L. Load  Avg L. Load Avg L. Load Avg L. 

            

           

10 
1
 1.0244 1.0506 1.0263 1.0571 1.0282  1.0591 1.0300 1.0625 1.0300 1.0795 

10 
2
 1.0413 1.0832 1.0432 1.0883 1.0451  1.0968 1.0469 1.0987 1.0469 1.1164 

10 
3
 1.0582 1.1213 1.0601 1.1232 —  — — — — — 

10 
4
 — — — — —  — — — — — 

Table 2: The relative bus load and average message latency under nk = 3 and diff erent values of P and Q where 

―—‖ means that there is no feasible solution. Without the security mechanism, the original bus load 376.44kbps 

and average message latency 11.535ms are both scaled to 1. 

 

on the bus load, the average message latency, or the 

message latency (deadline) for each message, then 

we can check if the security mechanism can be 

applied or not. As shown in Table 1, when nk = 1, if 

we want to make sure that the probability of a 

success-ful attack and the probability that a node is 

out of synchronization are both bound by 10 
4
, then 

there is a 3% increase on the bus load and a 6.25% 

increase on the average message latency. Note that, 

in some cases where the values of P and Q are both 

large, there is no feasible solution. For our 

experiments, we show that we can achieve a very 

high security level (e.g., P (successful attack) ≤ 10 
8
), 

with a bus load or average message latency 

increasing less than 6% and 14%, respectively. 

However, as shown in Table 2, when nk = 3, we can 

see that the feasible region is reduced. This is 

because it needs 3 MACs, but there are only at most 

Lk − Ck bits available. 

 

V. CONCLUSIONS 
We described a security mechanism that can 

be used to retro-fit the CAN protocol to protect it 

from cyber-attacks such as masquerade and replay 

attacks. The mechanism is suitable for this protocol 

because it has a low communication overhead and 

does not need to maintain global time. Besides, the 

solution is software-only, hence, it is not overly 

expensive to implement. Experimental results 

showed that our security mechanism can achieve high 

security level without introducing high 

communication overhead in terms of bus load and 

message latency. 
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      Q     

           

P 10 1 10 4 10 7 10 10 10 13 

 Load Avg L. Load Avg L. Load  Avg L. Load Avg L. Load Avg L. 

            

           

10 1 1.0094 1.0241 1.0113 1.0267 1.0131  1.0288 1.0150 1.0322 1.0150 1.0488 

10 
2
 1.0150 1.0322 1.0169 1.0394 1.0188  1.0425 1.0206 1.0445 1.0206 1.0612 

10 
3
 1.0206 1.0445 1.0225 1.0481 1.0244  1.0506 1.0263 1.0571 1.0263 1.0741 

10 
4
 1.0282 1.0591 1.0300 1.0625 1.0319  1.0646 1.0338 1.0668 1.0338 1.0839 

10 
5
 1.0338 1.0668 1.0357 1.0733 1.0375  1.0767 1.0394 1.0789 1.0394 1.0962 

10 
6
 1.0394 1.0789 1.0413 1.0832 1.0432  1.0883 1.0451 1.0968 1.0451 1.1144 

10 
7
 1.0469 1.0987 1.0488 1.1007 1.0507  1.1040 1.0526 1.1061 1.0526 1.1238 

10 
8
 1.0526 1.1061 1.0544 1.1129 1.0563  1.1181 1.0582 1.1213 1.0582 1.1393 

10 
9
 1.0582 1.1213 1.0601 1.1232 —  — — — — — 

10 10 — — — — —  — — — — — 
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